' 3
ES " n
D“B L COPY uncrassirien
® O
<
<
m AUSTRALII‘\
® N
N
< ELECTRONICS RESEARCH LABORATORY
0
° < . .
Communications
, Division
o i A%
“UECTE
JUL 0 6 1990
i REPORT
D % ERL-0511-RE
[
CONTROL OF A COSSOR CSP1250 IONOSPHERIC
SIMULATOR IN AN AUTOMATED HF TEST BED
by
L
Patricia L. Slingsby
Py SUMMARY
This document describes software developed to facilitate PC control of the Cossor CSP1250
Tonospheric Simulator incorporated into the Electronics Research Laboratory Automated
HF Test Bed.
@
© COMMONWEALTH OF AUSTRALIA 1990
DETRRTON ST r
VAY 1990 ’ DITEVTCN ST & corvnd.
bproved iz: puric relecsey
@ .. Dismounea Uniimited
APPROVED FOR PUBLIC RELEASE
o

POSTAL ADDRESS: Director, Electronics Research Laboratory, PO Box 1600, Salisbury, South Australia, 5108.

- UNCLASSIFIED

ERL-0511-RE

1 ¢

UNCLASSIFIED

UNCLASSIFIED ERL-0511-RE

CONTENTS
Page No

LIST OF ABBREVIATIONS.......cciiiiiiiiiiinitieetetee e s vii
1 INTRODUCTION. . ..ottt st sttt eae e st aeens e n e ennne st sans 1
2 ADVANTAGES OF THE PC CONTROL PROGRAMcooiiiiiiiiiiiiiniinccce e 4
3 THE SIMULATOR MODE OF OPERATION........ooiiiieieteer e 4
4 THE SIMULATOR CONTROL PACKAGE ..ottt 5
5 USING THE SIMULATOR CONTROL PROGRAM.......cooiiiitirrtertccstntei e 5
5.1 Program operating procedUIeS.......cceerrtirnitteinnurienurareiiitreesaetressieeesinteeassaaeeaesnreesees 5

5.1.1 Invoking the program.....iee 5

5.1.2 Entering input from the keyboard ... 6

5.1.3 Ertering input from a fileoeeeiueiiioiiieiii 13

5.14 Initiating communication with the simulator........cc.ooevinniiininnnnnn, 16

5.1.5 Simulator input measurement.........c.coccuereeeiiiiiiiiirininiie e 16

5.1.6 TeSt SEt UP..uiiviiiiineiriirnnrenneninnieeeestes st e te et ne s est s e s s san e eare e 17

5.1.7 Menu OPtONS....cceviiiirieieneninenttestnit sttt et r s 18

6 PROGRAM MODULE DESCRIPTIONScccceetttiiiiieieninenitiienesnieessnteessaessisss s snneses e esennaes 20
6.1 Timing Considerations..........ccceerimiemrnrenniinitiniiiiiireiee et 20

6.2 Module SIM.C....cooiiiiiiiiiiiiicsre e e e e 27

6.3 Module DATACOL.C ...ttt ne e snas s e 27

6.4 Module UTILITIES.C......ccococvivimmnritinrnninnientinrniiestetesssseessecssesssasansssssssessesensaens 27

6.5 ModuleSCALER.C.....cccciiiiiimuiiesnttnniiinnienntte e staie e ssnseesnneeesanste s sstesesan e e srnnsesans 27

6.6 Module FORMAT.Ch......cccoiiimiiimniniinnientintininsinneenne et ere st sbeessss st stsesnnssresssenes 27

6.7 Module IO.C....uuiiiiiiiiiicit et et 28

6.8 Module ASYNC.C......uueiiuiirinrnnisrnenineniiniieennteenteesesecsesssssessssassssssssssessssanessesessnsanen 28

6.9 Module CALIBRATE.C.....ccccooevrririmntinintinininieeeietenteetesies st eteste e ta e s s saeseens o 28

6.10 Module MENU.C........coiriiininrertninnenienteireineesesesesee s ssss s s sesess et s snesassnne 28

7 SUBROUTINE DESCRIPTIONScioiiiiseennttinnieniiniteniine st et e snas s aessanesssnaeans 29
7.1 Module SIM.C....oiiiiiiiiiiticisree sttt s be st a e 29

P28 15 RS 28 £ O R O PO U OO U U O 29

7.1.2 PROG_OVERVIEW()...ccccentiitintinitiiniiesie sttt ittt s n s e 29

703 GET_KEY() .uiiiiiiiitiiiiniennnenentientiesitie sttt s seesiasasssabe s sesannes s ssasaesesennsas 30

7.14 TITLE_PAGEQ «.covtiniiiniinienitienitenttcntcntee ettt eenesssneesae s en e st e nne s nnans 30

715 TEST_BEGINQ...ccooriiriiiienrnentteninnieniientiesniessnae s tees s ssasssss s snesineesinesnns 30

7.2 Module DATACOL.Cccoieiiiirinnninnniiniiniieiisinrensessieee e ssnessssssssssassssssssesseans 30

7.21 GET_INPUTO) ..cooiiiniiiiiiinnenninnin it st st seneesnessseesssssasssssaesesnses 30

7.22 FILE_INPUT() c.covviiiiniinrtnnntentininsttn st ersnsesasesssatesnaeanans 31

7.2.3 LIST_FILES ...ttt tn s st s n s s sn e s nn e snes 32

7.24 EDITQuuuiiiiiiiiiiiiiiiiiieniienene et sneseres s nas e rs s e s st e s n e s e s s s 33

7.25 RETRIEVE_DATAQ ... tiiiiiiniiieiennnie e s sss s s 33

7.26 KEYBRD_INPUT()ccoocerrerntrenmiineenienniieenieeseneinin e srne s sstsesraeasssasssn e ssnns 33

7.2.7 INITIALISE()...cioviiiviinriirniitininenieiitiecrecnianssssesas s sane s sbe s e s s ssnnesssnnasens 33

7.28 PARAM_DATAQ .cccccieireiiiiitiiiiiiiiniie e ssassssssss s s s snssassssasnnes 34

ERL-0511-RE UNCLASSIFIED

7.2.9 GET _ENTRY () iiooeermeeeivereeaetesaeimesasnannnnensesriassereesareesssmeesmmmsnnnsseossessssssan 34
7.2.10 PRINT_ERROR() ...ovuuiieiriiiieioiiiiitniirttiiereteesrueresnsseenassesesnnnsassssnssresssnsessasannss 34
7.2.11 ENTERCOMU() ceeuiiiieireieieeeirenestreesireieesrensermueresnsesssresssssensessessnessoessnsssssessesses M4
7.2.12 GET_COMMANDI) ...coutuevirerenreniiiiientererieeeeeeerseeereeeesssnssssnssssessmemmnsnrsssssssones 36
7203 SAVE_FILEQ) .uiutiiuiiiereiieieaireeeacsniunnrsreraeeseesesresremmessesnmsssnsesssessnsnsnsnnssssases 36

7.3 Module UTILITIES.C.....ueevreiiiiieiienencesartterentuserereeeiaresesseresasassssnasssssnnsesssssarersssassens 37
7.3.1 UTILITIESQ) cccueciieeiiiieeieiereeserreeeeeecsteteneeeraeeseseeeeseesesesessssssnnsnnassesssssesensssassnnnn 37
7.3.2 CHANGE ()ecereiirinreieeeiiiiecerereeeneasacstseseesssssarsnnmesssessaessonsssssssnsnnnnnsssasseessessees 38
733 CHANGE _PARAMS()...cceiiiettiieiiccirnitttirteesiereseisesinsnssssssnnsnsssssssssssssssasasnnan 39
734 INPUT_STRINGU O .ciooiiireeiiieeeeeeeeeirieserueetrenteereeseeciressessssesseminneraesssssssessasenses 39
7.3 ISP LAY () iiiiiiiiiiiieieriaiereserreeeerreeseenaessasaesrenssernnserssensssanssasannssenssrassennes 40

7.4 Module MENULC.....iiiiiereriieiiiveeriieciiessiariesssessesesesessessasssssnssosssssssnssassas sesassansanans 40
741 MENU_OPT() ccoiiiiiiieieieiieeiieerettieetieeieiaeesseraeeraasessaesassassssssesssannssesssssenesesennnes 40
V% Y N .10 O 1 LU UUPP PR 41

743 MENUSO oottt ecececreretetete et seesaesresesasessaessaesessessasesransnsannnsssssssnsenaanens 41
744 HELPQoooeeeeeeiiieiieieeeereeerseeeeestteettesassesssiasansnsnsssnsnssnnsssssssssssenssessasessssnsnnssns 42
74.5 DRAWBORDER() ...cciuiuttvtiveremmiriariiririaeeriaeeseseeeeiestesesesessesssntosaesesssssrsrmssnsnnes 42
74.6 MAINWINDOW()...coioiiiieiiceeetttieteieceneeesiseraesseessesesresesessesesssnnnnsesesesessesessnee 42
7.4.7 STATUSLINEQ....iioieiiieiieeiireeeteteetireesessceesseesesesesesesssasssesnasantnssnsssasossssnesssnens 43
74.8 GPRINTEQ .. cicicseseeruesuseeetneeteeeieaaaeiasesesssassssssssssansssssensnnsssnssssssesssssrsesasesns 43

7.5 Module FORMAT.C....ocoteiireeriieierrercccnnieiessenseeisssseesssessassssassssssssesssssnmaasssssasssnsesas 43
751 FORMAT DATA .c.uuutruurcresesnaesrutmereereesessessasarsessssssssssmiomsasasssmsssnsnnssnnsees 43
752 CONVERT_TO_DECIMAL(Q cccitttttutumiaeeeererrernrrersseserersmnseesesnnaessssssssasssnsnns 44
7.5.3 PRINT_MEAS() ccoiiiiiiiiiiieeiiecertrtettetienireeeseeeeseseseseseseseesesanassssunnssssssasesssssnanens 45

7.6 MOAUIETO.C ...ttt e tteesessssesessustastesrasaraseearssssssssssssnsserenesnnnssssssssnsenss 45
7.6. 1 COMS _INIT().eeeiriererirrnireeererersuumnmsiaracseseseseenssssessessnesnnssessrsnssssssnssssessennsnnns 45
7.6.2 COMS_RESTORE() cccvceviivieererrereieriieeieieeriesesesesassseesessessssesssnmnnsesssasssssssssennnes 45
7.6.3 SEND).ciiieiieeeieiiiiiieeeeeeiieeieetitteteeeencessasesesesnsesesesesssssasesssssessnssnnnnsstsssaseesssnens 45
7.6.4 RECEIVE() .iuiiiiiiiiiiiiieiiieieeriireeirieaetecessesesesssssnssasssssssassssssssssarssnnnnsessssssssssnanes 46

7.7 Module SCALER.C.......oviescesessseissnmantreecreeerssstssmrastemsmssssssssasassssennssonsssssonssas 46
7.7.1 SCALE_INPUT()cccccorieeiiieeirocirresrvareeeatessessesssesssasassessssssssssssssssesssssssesssassasns 46
7.7.2 SCALE_LEVELSQ) .cciviiiiiiiiiirieieiieeeiieeiereeiessesissceessassesessssssssssnsssnnsnnssssseenasenens 46
7.7.3 SCALE_OFFSET() cccieetiieiiiieiirireireeiesecessosssssssesiassssessassnsssssesarssnsensnsssssnassasanes 47
7.7.4 SCALE_DELAY()uciiuiiiuiuiirieees rverenuuesseesereensuesnnesesserransssssssnnssasssnsessssssannnes 48
7.7.5 CALC_FDCOEFF()......ccrseresrrrertrreererararessnrnsessarearaesseseassessersassssssssansssssrenssnens 48
7.7.6 SCALE_OSC().ccciiriririinrererererrerenmmmaitmemmmmnoaresessesassestssossessssennsssesssnssssesessesens 49

7.8 Module CALIBRATE.C.......eeeeiiretrecinieniensneiseesiiensessisssstesesssrsnesesenesacsassssassnsessss 49
78.1 MEAS_AND _CALQDuuiiiiiiicivrrererieiinteriessnttrteanesessnsssesesasessaseesieessessnsrsanenes 49

7.9 Module LOGGER.C......cooviieiieveciitnsscsnteersineesesssraessessenasssssssusnessssssssnnsssssesssssssssees 50
8 FUTURE EDITING OF THE SOFTWARE....cccoiciittiecitireitttecctiteestaessecsseessssssennessssssansessssssnnnenn 50
9 COSSOR SIMULATOR PROBLEMSoiiiiiieieiietiiciiineiieeinesnasesesisssssssessessesnssssssnonssssassesnnsnes 51

e AAMSEANS A FIv.7. N

UNCLASSIFIED ERL-0511-RE
CONTENTS
FIGURES
Figurel Configuration of the ERL Automated HF Test Bed.......cocoovieviiniiiiiinninniininininnn, 2
Figure2 Proposed modified configuration for the ERL Automated HF Test Bed..........ccoconeuececee 3
Figure3 Program functional breakdOWn........ccviviniinniiiininiiinniniini e, 21
Figure4 Data Collector functional breakdown.......ccvciiiviinniiciiiiie 22
Figure5 Controller functional breakdOWn........ccoviviiiieiiiiiiniiniccninnnn el 23
Figure6 Fast Processing Unit Conversion functional breakdown.........ccccvverivmnininnnininnininnas 24
Figure7 Test Logger functional breakdOWnc..cocueniiniciiniiniiniiiniciiin e, 25
Figure8 Module data transfer and subroutine listing.......ccooeeennceniicriciiiniiisinnnniinnnnen. 26
CAccesn For gy]
I
NTIS Claid
DTIC TAU]
Unannon, o d - i
Justitication o
. - i
Diste s L /\
- |
e !
M
.\(‘" &

ERL-0511-RE

UNCLASSIFIED

UNCLASSIFIED ERL-0511-RE

LIST OF ABBREVIATIONS
CCIR International Radio Consultative Committee
DDS Development Documentation System
DSTO Defence Science and Technology Organisation
ERL Electronics Research Laboratory
PC Personal Computer
PTS Pilot Tone Sounder

LNCILASSIFIED Ml

ERL-0511-RE UNCLASSIFIED

viil . - LINCI ASSIFIED

UNCLASSIFIED / ERL-0511-RE

1 INTRODUCTION

“The development of modems, scramblers, frequency hopping units etc, for HF channel operation

requires repeatable and comparative tests to be carried out under typical conditions. By using HF
channel ionospheric simulators these tests can be carried out more cost-effectively and
conveniently without the need for the relatively expensive live-link tests which would
otherwise be necessary. Such simulators not only provide repeatable HF channel conditions,
they also permit some control of the link parameters - an aspect not readily achievable with
"live” circuits/7

The Automated HF Test Bed currently under development at the Electronics Research Laboratory
(ERL) uses a Cossor CSP'1250 Ionospheric Simulator. The Test Bed also incorporates ‘ransmit and
receive modems, data error analysers (which generate and monitor a pseudo-random bit
sequence), and a Pilot Tone Sounder (which performs bit-error-rate analysis of the received

data). A functlonal diagram of the ERL Automated Test Bcd is provnded in Figure 1 overleafs ‘u) W cls
T Lot e Ao "")Cf 6o CSP S0 EERE Y "L P"{,.:’:Ll,‘-\
NOTE: It is intended in the future to modify the test bed so that the data collection and

analysis functions of the Pilot Tone Sounder will be incorporated into the simulator

control software. Figure 2, overleaf, shows the proposed modified configuration of

the test bed. A i

Toalorr e o, o J'(r“’ o L f/ra{« T %\
The Test Bed is to be used primarily as a research tool and a cahbratxon facxllty for an
Intelligent Frequency Management System. It will also be used in a terrestrial transmission link /’ fos

model to be developed under the proposed Innovative Communication Architectures task. In \‘ s)
addition, the Automated HF Test Bed will provide a useful tool for the development and testing
of HF communications equipment.

The propagation model upon which the Cossor simulator is based is that defined by the
International Radio Consultative Committee (CCIR) (HF Simulator model in question 21/3 of
the Geneva symposium). The simulator can reproduce various propagation effects, including
differential multipath delay, frequency offset, fading and noise, over either one or two
simulated HF links.

Normally the Cossor CSP1250 simulator is controlled by an Epson HX20 microcomputer using a
program written in Epson Basic. For its use in the ERL Test Bed the simulator is to be controlled
by an IBM compatible PC via an R5232C port running at 4800 baud.

This document describes the software developed to support this application.

UNCLASSIFIED 1

7/

ERL-0511-RE UNCLASSIFIED
1
DATA Tx. Tx.data Ch. A/B
ERROR MODEM ANALOG
ANALYSER Rx| Tx. clk. SWITCH
clk
{
Toggle (
IBM IONOSPHERIC
: SIMULATOR
RS 232C link
PRINTER PERSONAL Ouput] Outpu?
COMPUTER
{
USB LSB
Timing HE

EXCITER

PILOT . {
PRINTER TONE Antenna input - ‘
SOUNDER RF in RFin
HF HF
RECEIVER RECEIVER

4

MODEM

Rx. data Rx.clk.
{
DATA
ERROR
ANALYSER
BBE error ¢
BLK error

Figurel Configuration of the ERL Automated HF TestBed {

AAMAONS A ONA

S S —

UNCLASSIFIED ERL-0511-RE
DATA Tx Tx.data Ch. A/B

ERROR MODEM ANALOG

ANALYSER Rx] Tx. clk. SWITCH
clk]
Toggle
BM IONOSPHERIC
. SIMULATOR
PRINTER PERSONAL RS 232C link
COMPUTER Quiput] Output 2
USB LSB
RS 232C Link HF
EXCITER
DUAL BIT
ERROR RATE —
COUNTER RFin |RF in
HF HF
RECEIVER RECEIVER
MODEM
Rx. data Rx.clk.

DATA

ERROR

ANALYSER
BBE error
BLK error
Figure2 Proposed modified configuration for the ERL Automated HF Test Bed

A AARAL A MMUTITTS

I

ERL-"511-RE UNCLASSIFIED

2z ADVANTAGES OF THE PC CONTROL PROGRAM

The ERL-developed control program for the simulator is modelled on the program supplied by
Cossor in support of the Epson micro computer with which the unit is normally controlled. In
addition to retaining .he elementary features and capabilities of the Epson package the ERL PC
program provides a much enhanced more user-friendly operating environment for the test bed
operator. Also, many of the limitations of the Basic code are alleviated by the test bed PC
package which additionally facilitates the automated running of test configurations that have
been stored on disk. The PC package offers an improved display and access to more memory than
does the HX20 machine, with additional file and data manipulation capabilities. At some
later stage it will also include a data collection and analysis facility.

The PC program enables the operator to edit, display and otherwise manipulate all of the path
characteristics of the simulator. It is menu driven and inciudes comprehensive help menus and
data manipulation utilities. Unlike the Epson program for which the operator is required to be
familiar with a number of specific keyboard responses and codes for the numerous controller
options, this package displays menu options at each sub-menu level. Menu options are activated
by function keys rather than by the specific ASCII codes of the Epson software, and the operator
is given flexibility to move between stages of the executing program.

The PC package is coded in Turbo C (version 1.5) with the asynchronous controller-simulator I/0
modules written totally. in assembly code and compiled separately. [/O over the RS232C link is
interrupt-driven with transmit and receive data being stored in circular buffers which may be
rewound and accessed as required.

3 THE SIMULATOR MODE OF OPERATION

The Cossor simulator can be set up in either of the following two test configurations.

(a) One groundwave path plus four skywave paths, each of which can have a special path
delay and Rayleigh fade associated with it.

(b) Two groundwave paths which can be frequency offset from each other, plus two skywave
paths associated with each groundwa ... These paths can have various fade, noise and
delay parameters assigned to them. In addition, a single oscillator tone (the frequency of
which can be specified by the operator) can be added to the signal and the gains of each
path can be changed.

The simulator also has an additional input to which an interference source or a recorded signal
may be added. This facility is useful when evaluating the performance of systems in the
presence of noise.

UNCLASSIFIED ERL-0511-RE

4 THE SIMULATOR CONTROL PACKAGE

The simulator control package gathers from the operator all the parameter data required to be
set up on the simulator for a test (or set of tests). This data includes relative strengths of
groundwave and skywave signals, the signal-to-noise ratios for each path, frequency offset
between groundwave paths, skywave fade rates and skywave delay times. The operator also
specifies the time for each increment of the test parameter(s) and the value by which that
parameter(s) should be incremented or decremented.

The control program scales this user data and calibrates it to conform with the simulator data
requirements. As part of this calibration the simulator measures the input signals that are
applied to it so that it can use these values to adjust internal parameters to achieve the required
test configuration. The program then sends all the calibrated data to the simulator via the
RS5232C link. When prompted by the operator, the program signals the simulator to activate the
test configuration to perform the test sequence stored in memory and at the time intervals
specified by the operator.

As the test progresses the data is automatically logged. In addition the operator can select the
data to be output to a disk file or printer.

During test runs the operator has the option of resetting the simulator, restarting the test
sequence, setting the simulator to measure either input or output signals and of displaying all
parameters most recently sent to the simulator from the control program.

5 USING THE SIMULATOR CONTROL PROGRAM

This section of the document provides an operational description of the simulator control
program.

For descriptions of the software modules and subroutines reference should be made to Sections 6
and 7 respectively.

5.1 Program operating procedures

NOTE: With all operator responses, the program will accept either upper or lower
case characters.

5.1.1 Invoking the program
The program name is SIM. To invoke the program from DOS enter "sim' at the DOS
prompt. Once the program is invoked, the following screen message will be displayed.

UNCLASSIFIED - &

ERL-0511-RE UNCLASSIFIED

IONOSPHERIC SIMULATOR CONTROL PROGRAM

Version 1.1
developed by:
P.L. Slingsby
August 1988
Terrestrial Transmission Systems
Electronics Research Laboratory
PO Box 1600
Salisbury
South Australia 5108

Next depress function key F1 to display an overview of the program. This overview consists of
six screen pages that may be stepped through by pressing any key to continue. When the last
overview page has been displayed the program will automatically continue. If it is desired to
exit from the program overview before the last page has been displayed, select ESC to advance
to the next stage of program execution.

If an overview of the program is not required, select any key (other than F1). The screen will
then display the question

Input by keyboard <K> or file <F>?...
Enter K to create a new set of data or F if the input is to be recalled from disk

NOTE: Any other key depressed at this point will result in no reaction from the
program.

5.1.2 Entering input from the keyboard
If K was selected when the program was invoked the following prompt will be
displayed
one <1> or two «<2»> paths?...

This prompt allows the operator to simulate either non-diversity or diversity
operation.

UNCLASSIFIED ERL-0511-RE

5.1.2.1 Entering parameters
If non-diversity (1) is selected the following screen prompt will be displayed.

ENTER PARAMETER VALUES...

Relative level of ground wave 1?(dB,0 is absolute) {gw1}
Relative level of skywave <1>? (dB,0 is absolute) {sw1}
Relative level of skywave <2>? (dB,0 is absolute) {sw2}
Relative level of skywave «<3>? (dB,0 is absolute) {sw3}
Relative level of skywave <4>7 (dB,0 is absolute) {sw4}

Frequency offset for path 1? (0 -> 5000H2z) {to1} _ _
Signal/noise for path 1? (0 - 70 dB) {sn1} _ _
Signal/interference for path 1? (as for s/n) {si1l} __

Delay for skywave <1>? (0 - 11.6ms in 0.ims steps) {dsi}
Delay for skywave <2>? (0 - 11.6ms In 0.1ms steps) {ds2})
Delay for skywave <3>? (0 - 11.6ms In 0.1ms steps) {ds3}
Delay for skywave <4>? (0 - 11.6ms in 0.1ms steps) {ds4}

Rayleigh fade rate for skywave <1>? (0 - 80 Hz) {fs1} _
Rayleigh fade rate for skywave <2>? (0 - 80 Hz) {fs2} __
Raylelgh fade rate for skywave <3>? (0 - 80 Hz) {fs3} __
Raylelgh fade rate for skywave <4>? (0 - 80 Hz) {fsd4} _ _
F1-HELP

If diversity (2) is selected the following screen prompt will be displayed.

" ENTER PARAMETER VALUES...
Relative level of ground wave 1?(dB8,0 Is absolute) {gwi}
Relative level of skywave <1>? (dB,0 is absolute) ({swi}
Relative level of skywave «2>? (dB,0 is absolute) {sw2}
Relative level of groundwave <2?(dB,0 Is absoiute) {gw2}
Relative level of skywave <3>? (dB,0 Is absolute) {sw3}
Relative level of skywave <4>? {dB,0 is absolute) (sw4}
Frequency ofiset for path 1? (0 ->+/-5000H2) {fo1}
Frequency offset for path 2? {0 ->+/-5000Hz) {fo2}

Signal/noise for path 1? (1,0 or In dB) {sn1} __
Signal/noise for path 27 (1,0 or in dB) {sn2} _
Signal/interference for path 1? (as for s/n) {si1} __
Signal/interference for path 2? (as for s/n) {sl2) o

Delay for skywave <1>? (0 - 11.6ms in 0.1ms steps) {ds1}
Delay for skywave <2>? (0 - 11.6ms In 0.1ms steps) {ds2}
Delay for skywave <3>? (0 - 11.6ms In 0.1ms steps) {ds3}
Delay for skywave <4>? (0 - 11.6ms In 0.1ms steps) {ds4)
Rayleigh fade rate for skywave <1>? (0 - 80 Hz) {ts1)
Raylelgh fade rate for skywave <2>? (0 - 80 Hz) {fs2}
Rayleigh fade rate for skywave <3»? (0 - 80 Hz) {ts3)
Raylelgh fade rate for skywave <4>? (0 - 80 Hz) {fs4}
F1-HELP

ERL-0511-RE

UNCLASSIFIED

5.1.2.2

The operator must now enter the desired parameter information at each
level of the prompt as it progresses down the parameter list. As each
value is entered the ENTER key must be selected. Use the backspace to
edit keying mistakes.

As can be seen from the displayed prompts, legal values are given for each
parameter. Value "0" indicates that there is no path, therefore if
skywave 1, for example, was given the value 0 then assigning a delay to
skywave 1 would have no effect. The character "I" may also be used for
signal-to-noise and signal-to-interference parameters to indicate a value
of infinity.

If an invalid value is entered it is erased automatically and the prompt
"re-enter” displayed in its place for two seconds. The operator must then
enter the correct value for that parameter. At any stage during the process
of entering the parameters the operator may invoke the HELP option by
selecting F1. An explanation of the valid parameter limits can then be
viewed.

NOTE: If it is required to edit a value already entered and accepted
by the program then all subsequent parameter values must be
entered before the mistake can be corrected. To edit select
function key F3.

Entering the test command

Once the last parameter entry has been made, one of the following prompts
will appear at the bottom of the screen. (The first prompt is displayed in
the nondiversity case, the second in the diversity case.)

Enter test command: <params> «<init val> <final val>
<inc><time>

o
Enter test command: <param[¶m]> <init val> <final val>
<inc> <time>

The operator must now enter a test command in the requested format. A
valid test command comprises the following:

<param> = the parameter code - a valid test
command of the parameter to be changed during the test, as
displayed under the "Enter Parameters Values” prompt, eg.
sn1 for signal/noise path 1.

<Init val> = the initial value that the parameter is
to take (in the units specified in the prompt, eg. for sn1, dB).

. _UNCLASSIFIED

UNCLASSIFIED ERL-0511-RE

5.1.2.3

<final val> = the final value (in specified units) that
the parameter is to take.

<time> = the time that each incremented stage of
the test is to last. Enter in minutes as a real number, eg. for 5
min 15 s, enter 5.25 min.

In the case of diversity operation the operator may also request that two
parameters be changed simultaneously (the <param[&

param]>command).

This facility allows the operator to test the behaviour of the two paths
under different conditions but over the same incremental values of a
separate parameter, eg. to test the behaviour of two paths with different
delays as the signal-to-noise is stepped from 0dB to 60dB for both paths.

Thus the test command "snl & sn2 10 60 5 5, requests that the signal-to-
noise ratio of paths 1 and 2 be stepped from 10dB to 60dB in 5dB increments
every 5 minutes and is a valid command for the diversity case. It would
not be valid for the non-diversity case, however, because sn2 is an invalid
command for this mode and also because the "&" character is not allowed
in nondiversity command lines.

- If an invalid command line is entered then an error message will appear

for one second and the operator will be instructed to re-enter the command
line. The operator may consult the HELP menu, if required by selecting the
function key F1.

The Utilities Options

Once the command line entered by the operator has been accepted as valid
the following display of the available utilities options will appear on
the screen.

F1 - HELP

F2 - SAVE AS TEST <..>

F3 - CHANGE PARAMS

F4 - FILE

F5 - DISPLAY

F6 - REENTER COMMAND

F7 - ADD OSC TONE TO TESTS
F8 - ADD PATH GAIN

A description of each option is given below.

AA00AI ADDUIIEE

ERL-0511-RE

UNCLASSIFIED

F1-HELP

This option is available from almost anywhere in the program. It
comprises a number of menu and sub-menu options that can be invoked to
display information on keyboard responses at various stages throughout
the program execution, utility selection and other menu options. The
operator can exit from the HELP option at any time by selecting ESC .

F2 - SAVE AS TEST

This option saves all the parameter and command line data currently
displayed on the screen as well as the current values for oscillator tone and
path gain(s) entered under options F7 and F8 - (these values are 0 and unity
respectively by default). When invoked, option F2 causes the screen
message "Saving Test «test number>" to be displayed. After a test
has been saved it can still be changed using the other options described
below.

NOTE: If a test is not saved before proceeding further that data will
be overwritten by subsequent data.

F3 - CHANGE PARAMS

This option enables the operator to edit the previously entered parameter
information that is displayed on the screen. The 'up’ and 'down’ arrow
keys are used to move the cursor to the relevant entry where the new data
is to be entered. When editing is complete select ENTER and the program
will prompt the operator to reenter the appropriate command line. When
this has been entered the program resumes.

F4 - FILE
This option files all the tests that have been entered and saved. When
selected the following prompt is displayed.

"Do you wish to change this data? (Press <Y>, <N> or F1 to
display tests)”

If it is required to change data, ie. Y is selected, the following prompt is
displayed:

"Which test? (Enter number of test, F1 to display all, or ESC to
exit)”

4.0

LIMOLASCICIEND

—ﬂ

UNCLASSIFIED ERL-0511-RE

Here the operator must enter the digit corresponding to the number of the

® test to be edited. If unsure of the number select F1 to display all saved
tests. If an invalid number, ie. a test that does not exist, is entered the
following error message will be displayed:

“"There is no test <test number> in this file! Press any key to
® return...”

Once a valid test number has been entered, the following screen prompt

appears.
¢ “Do you wish to change params <P>, oscillator tone <T>, path
gain <G>, or command line <C>?..”
This option gives the operator the opportunity to change the information
Py to be filed. Select P to edit the parameter information, C to edit the test

command line, T to edit the oscillator tone frequency and level, or G to edit
the path gain.

If P is selected the relevant parameter proforma is displayed with the
@ current parameter values shown. The operator then simply edits this list

using the ‘up’ and ‘down’ arrow keys to move the cursor to the relevant

parameter value. Select ENTER when editing has been completed.

" If C is selected the command line prompt relevant to the current mode
(] (diversity or nondiversity) is displayed. The operator then simply enters
the new test command.

| If T is selected the operator is prompted to enter the oscillator frequency
‘ and level (in volts).

NOTE: Once the oscillator tone has been changed, the new data
remains valid for all subsequent tests until changed again. To
remove the oscillator tone for a subsequent test, the level must
be changed to 0 Volts.

If G is selected the operator is prompted to specify which path gain
should be changed from unity (the default), ie. for signal select "'S", for
interference path select "I".

After the requested changes have been made and accepted by the program,
the new data is displayed to the operator in the form shown under F5-
DISPLAY below.

UNCLASSIFIED 11

ERL-0511-RE UNCLASSIFIED
The operator is then asked whether additional editing is required. If
further editing is required (Y selected) the above procedure is repeated. If
no further editing is required (N selected) the following prompt is
displayed.
"What flle name shall this data be filed under? Press <ENTER>
for no save...”
If the operator selects a file that already exists a prompt will appear to
ask whether the existing file should be overwritten.
F5-DISPLAY

This option permits all the data that have so far been saved using option
F2 to be displayed. The format is as shown in the example below. Since
only two tests are displayed at a time the operator must step through the
screen to show all the test data stored.

TEST 1 2

gwil 1.0 20.0

swi 2.0 20.0

sw2 0.0 10.0

sw3 0.0 0.0

sw4 0.0 0.0

fo1 50.0 50.0

sn1 20.0 25.0

si1 Infinite 30.0

ds1 0.55 0.25

ds2 0.0 0.5

ds3 0.0 0.0

ds4 0.0 0.0

fst 10.0 10.0

fs2 0.0 10.0

fs3 0.0 0.0

fs4 0.0 0.0

gw2 0.0 20.0

fo2 0.0 0.0

sn2 0.0 25.0

si2 0.0 Infinite

osc freq 5.0 0.0

osc level 1.0 0.0

test command sn1 2060 5 § gwi&gw2 § 20 § 5
When viewing is complete select ENTER to continue to the next stage of
program execution.

12 LINCLASSIFIED

UNCLASSIFIED ERL-0511-RE

F6 - REENTER COMMAND

This option allows the operator to reenter the command line for the current
test. If this option is invoked at a stage of the program execution when it is
not available, then it is ignored. When this option is selected the
previously entered command line disappears and is lost. If this option is
invoked by mistake, the command line must be reentered.

F7 - ADD OSC TONE TO TESTS

This option allows the operator to add an oscillator test tone to the input.
The operator is initially prompted for the desired frequency and level
(between 0 and 5V). This tone will be digitally added to the input signal.
The operator is next prompted to specify the time period (in seconds) over
which measurement of the input signal is to be made by the simulator.
This measurement is required so that the simulator will be rescaled and
recalibrated to allow for the additional tone.

F8 - ADD PATH GAIN

This option allows the operator to alter the gain of the programmable
gain unit at the front end of the simulator. By default this parameter is
set such that the input gain will be unity, however, it may be adjusted

- between 1 and 100 (in integer values only). As the requested gain may not
equal that calculated by the program (since not all gain values are
physically available), the gain achieved is displayed to the operator.
Again, measurement of the input signal will be necessary for the purposes
of rescaling and recalibration so the operator is prompted to specify the
time period over which this measurement should be averaged.

5.1.3 Entering input from a file
If, at the prompt “Input from keyboard <K> or file <F>?...", F was selected,
indicating that input should be from a disk file, then the following menu options
will be displayed on the screen.

F1 - HELP

F2 - LIST

F3 - VIEW

F4 - EDIT

F5 - SAVE

F6 - DELETE
F7 - ADD TEST
F8 - RENAME
F9 - CONT

) UNCLASSIFIED 13

ERL-0511-RE UNCLASSIFIED

A description of each of the above options follows.

F1-HELP

This option performs the same function as that described above for the utilities
options (page 10).

F2 - LIST

This option allows all files in the test directory to be listed, together with their
creation date and time. After this option is selected the program returns to the
point where the operator is prompted to indicate whether input is to be via file or
keyboard.

F3 - VIEW

This option allows the operator to view the data in a particular file. The operator
is prompted to enter the name of the file to be viewed. Once the name is entered the
contents of the file are displayed on the screen in the same format as the DISPLAY
option of the Utilities Options (page 12). After the operator has finished viewing
the relevant file the program returns to the initial stage where the operator is
prompted to indicate whether input is by file or keyboard. This facility allows the
operator to enter new data if it is found that no appropriate file exists.

F4 - EDIT

This option provides the means by which the operator can edit the data stored in a
particular file. The operator is first prompted to enter the name of the file to be
edited. Next the operator is prompted with questions regarding which test of that
file is to be edited, which type of data within that test is to be edited and so on, in
the same fashion as the Utilities Options function F4 - FILE described on page 10. It
should be noted that changes made to this file are not changed on the hard copy but
are stored in memory to be used on this run of the test(s) only. To record these
changes permanently it is necessary to invoke the SAVE option F5. The program
therefore returns to the file menu for this reason.

F5- SAVE

When this option is invoked the operator is prompted as to whether any further
editing is necessary. If not, then the operator is prompted to supply the name of the
file to which the edited data should be saved. As with the keyboard data case,
the operator has the option of not saving the changes. If the file named already
exists then the operator is queried as to whether the old file should be overwritten.

14

UNCLASSIFIED

UNCLASSIFIED ERL-0511-RE

If there has been no alteration made to the original file data then a message
indicating this is displayed on the screen.

F6 - DELETE

Selection of this option deletes the file named by the operator. Before the deletion
occurs, however, the operator is prompted to confirm the intention to delete the
named file, by the on-screen prompt,

"Delete filename?[Y/N]..."

If Y is selected t".c file is deleted. If N or any other character is entered at this
stage the command is ignored and no further action is initiated.

F7 - ADD TEST

This option allows the operator to add a test(s) to the end of an existing file. The
operator is first prompted to supply the relevant file name. The program then
changes to the keyboard entry mode and parameter data may be entered in the same
way as described on page 8 for keyboard entry. All the Utility Options described
previously are also available to the operator to facilitate data entry. Unlike the
keyboard case, however, the program does not proceed to run the tests after all
editing has been completed. Instead it returns to the file menu.

F8 - RENAME

This option enables the operator to rename a file. When first selected the operator
is prompted to enter the old file name. Next the operator is prompted to enter the
new file name. This renames the file.

F9 - CONT

This option provides the only means to continue past the file menu when in the
"input via file" mode. Since many files may have been entered into memory
through the various editing options, the operator is first prompted to indicate the
name of the file containing the tests that are to be run. These tests are then loaded
into memory. If an invalid file name is entered by the operator or the named file
has, for some reason, not been able to be opened, then an error message is displayed
and the operator is prompted to re-enter the relevant file name.

ERL-0511-RE UNCLASSIFIED

5.1.4 Initiating communication with the simulator

5.1.5

With the data for the test(s) to be run now in memory (having been entered either
by the keyboard or from file), the program now needs to determine where the
logging data should be sent. The following prompt is now displayed to the operator.

"Test data log to printer <P>, to flle <F>, or to screen <default>?...”

NOTE: By default the logging data is always sent to the screen. The operator,
however, has the option of selecting either "P" to indicate that the
data should also be recorded on a printer (connected to parallel port 1),
or F to indicate that the data should also be logged to a file.

If F is selected (the data is to be logged to a file) the operator is next alerted by the
following screen prompt

"What file name?".

The name of the file to which the logging information is to be sent should then be
entered.

NOTE: The program accepts any file name that is valid under DOS.

After entering the file name the operator is prompted as follows to specify whether
the test (or sequence of tests) should be repeated continuously or executed once only.

“Do you want these tests to continue Iindefinitely [Y/N]??"

The default response is N (no). It should be noted that under these circumstances,
although the program will cease executing after the test(s) in memory have been
executed once, the simulator will remain operating and set up to the last test
configuration that was run.

If the Y (yes) response was selected, ie. the continuous execution mode is invoked,
then the following on-screen prompt is displayed.

"<<<The tests may be stopped by pressing F10-Quit>>>".

Simulator input measurement

After the operator has specified where the log;;'ng information is to be sent, and
has specified a continuous or once only mode of test operation, there is a small delay
while the parameter data is transferred to the simulator via the R$232C link.
When this data has been successfully communicated the following on-screen prompt
appears.

16

——

UNCLASSIFIED ERL-0511-RE

“Apply signal and enter RMS period (secs) for INPUT measurement...”

NOTE: The simulator needs to make internal measurements of the input signal
(and the interference signal, if applicable) so that it can calibrate path
parameter values. It is therefore important that the signal level
measured by the simulator is that which will be applied to the
simulator during the lest sequence - a measurement of input signal levels
must be made each time the level is changed to ensure that the desired
test configuration is set up.

® The operator must next specify the time period (in seconds) over which this
measurement should be made. A measurement is made by the simulator every second
so that an operator response of "5" would causc the simulator to make five
measurements of the input signal and average the results over five seconds.

® Instead of a number, the operator may enter the character "C". This causes the 1
simulator to perform measurements continuously until signalled (by any operator }
keystroke) to stop. Each measurement made in this way is displayed on the screen, |
thus allowing the operator to adjust the signal level whilst noting the simulator :
readings.

Next the simulator measures the interference input level. The operator is again
prompted, as follows, to enter the period over which this measurement should be
averaged.

® "Apply signal and enter the RMS perlod (secs) for INTERF
measurement...”

The same options are now available to the operator as were available for
measurement of the input signal. It is important that measurement of these two
signals is correct since they form the basis for calibration of the simulator internal
parameter values.

NOTE: On occasions the simulator may mis-measure these signals. It is
° important therefore to ensure that these values look correct, otherwise
the test configuration will not be that requested and it will have a

different signal-to-noise ratio than expected.

5.1.6 Testsetup
Y Once the input and interference measurements have been entered, the test(s) is now
ready to begin. The following on-screen prompt will be displayed.

"Test <test number> I8 now ready to start.
Press any key to begin...”

ERL-0511-RE UNCLASSIFIED

5.1.7

With the 'begin’ function initiated, the test progression is then logged to the screen.
The current test parameter values, the code for the parameter(s) being incremented,
the current value for that parameter(s) and the time at which the current stage of
the test sequence was initiated are all displayed to the operator.

NOTE: The starting time for the test(s) is not the time when the operator
signals the controller to start, but is the instant recorded in the time
column of the logged data. The variable nature of the simulator
asynchronous communication with the contrcller program makes it
impossible to accurately predict the time interval between when the
program signals the simulator to start and when the simulator actually
responds.

Menu options
As the test(s) progress the following menu options appear at the bottom of the
screen. They can be invoked by the operator at any time available to the user.

F1-HELP F2-RESET F3-BOOT F4-DISPLAY FS5-MEASURE F6-
RESTART F8-GAIN F10-QUIT

A description of each option is given below.

NOTE: If a menu option is invoked at a time when the ftest is timed to alter a
_ parameter(s), the test will not implement the change until the menu
option has been executed. This means that although the operator can
invoke menu options whilst tests are in progress without disturbing
their automatic progression, the possibility of interrupting a test
transition does exist. By observing the test p:ogression the operator can
lessen the likelihood of interrupting the test.

F2-RESET

This option allows the operator to manually reset the sinulator, thus allowing a re-
initialisation of the fading, noise and phase conditions. Perhaps not so relevant in
an automated system, this option can nevertheless be useful when testing different
equipment with the same sequence of fading and noise when the system is utilised in
manual mode. The only evidence the operator is given of action taken by this option
is a an audible discontinuity in the audio output of the simulator.

F3-BOOT

Selection of this option sends all the current parameter values for the current test
stage to the simulator. This enables the operator to restore the simulator conditions
if, for example, the operator suspects that the desired test configuration has not
been achieved.

18

LINCI ASSIFIED

UNCLASSIFIED ERL-0511-RE

F4-DISPLAY

When this menu option is invoked two further options (F1 and F2) are displayed to
the operator. By selecting F1 the operator can view the current test parameter
values - these are displayed in the format shown on page 12. By selecting F2 the
values of the sixty four parameters last sent to the simulator are displayed.

F5-MEASURE

With this option the operator can instruct the simulator to make internal signal
measurements.

When this option is selected four further options (F1, F2, F3 and F4) are displayed
to the operator.

* To measure the input signal select option F1

* To measure the interference signal select option F2
¢ To measure output signal 1 select option F3

* To measure output signal 2 select option F4

Once the relevant signal has been selected the operator is next prompted to enter
the period over which the measurement should be averaged. This is performed in
the same way as the simulator input measurement selections described in paragraph
5.1.5 above.

NOTE: If continuous measurement is required, again enter C.

Measurements made by the simulator are displayed on the screen in rms volts for the
input signals, or in dB for the output signals. The program will automatically
signal the simulator to recalibrate its internal path parameters to reflect any
change in input lovel.

F6 - RESTART

This option allows the operator to restart the current test. This is a very useful
option when trying to synchronise the system. After a RESTART command the
testing sequence proceeds as normal.

LUNCI ASSIFIEND . PN

ERL-0511-RE UNCLASSIFIED

F8 - GAIN

This option allows the operator to set the programmable gain unit in the same
manner as the Utilities Option F8-ADD PATH GAIN (refer page 13). It must be
noted, however, that since disk files do not store the programmable gain value ,
each time a file is recalled it is assumed to be the default value of unity. The
operator has, of course, previously been given the opportunity to set the path gain
(whether input was from the keyboard or from a disk file).

F10-QUIT

Select this option to exit the program. When selected the operator is prompted to
confirm this intention. If confirmation is not correctly given then the request to exit
is ignored and program execution continues as before. If the operator confirms the
wish to exit then the on-screen warning "Exiting!!" flashes for several seconds and
the program terminates. Once the program has ceased to execute, whether by
selecting the QUIT command or at the completion of a test, the simulator will
remain configured with the last parameters that were sent to it by the controller
program until switched off.

6 PROGRAM MODULE DESCRIPTIONS

The system controlling program comprises a number of function-specific modules. Figure 3
overleaf provides a functional breakdown of the overall program whilst the associated Figures
45,6, and 7 provide breakdowns of the main functions and show the software modules associated
with each. Figure 8, in addition to providing a list of the subroutines in each module, also shows
the data transfer between modules. Each of the modules is described briefly in paragraphs 6.2 to

6.10 below.

NOTE:

6.1

For a description of the associated subroutines reference should be made to
paragraph 7 below.

Timing Considerations

It is a requirement of the test bed Pilot Tone Sounder (PTS) that input to the ionospheric
simulator be disconnected for five minutes every sixty minutes so that true noise floor
measurements of the system can be made. It is therefore necessary that the simulator
controller be time-synchronised with the PTS and also that the controller operate an
analog switch to disable the input to the simulator for the required five minute period.

NOTE: While the initial controller software included the control of the analog

switch, during subsequent development of the project this function was deemed
unnecessary.

20

UNCLASSIFIED

ERL-0511-RE

From Pilot

Tone Sounder

Timing

Collective
input

DISPLAY

For functional breakdown

Send

——

»\

Actioned

CONTROLLER

Formatted

refer to Figure 5

DATA

COLLECTOR

EQUIPMENT
UNDER
TEST
Baseband
transmitted
data

Lcommand

Controller

Measured
data

A A

\

Test status
data

"< LOGGER]

FPU Params L SIMULATOR
CONTROL
|
FPU data
<L
RECORDING

[™ DEVICE

\\\\\\\\
77 AR AR

3 TEST A

:,:For functional. y
.’. breakdown - 1
N refer to »)
+. Figure7 - 1
7

7 7 2 27 2 s 7

.
NN
h Y

Test user
~ ~ ~ ~ “~ A -~
h A A A ~ ~ - A A
- A A A A A A A A A A A AN
PP AT AR R, a
~ - A A A A A AN A AN
A A A “~ A A A A A L)

et PSRRI
b A A A A A A A A A A a - A
aA A A A AAAA A A NN A -
N A A -~ -~ a ~ A~ -~

Calibrated

X
SRRSO
M A A A a -~ -~ oA A A A
aa e .
-2~ FAST alale
~ N \&hﬂ

data

[~222: PROCESSING .+ :

ANl
h A &

#1-2->- CONVERSION =221
{ Unscaled data -

Scaled data

a a e s\Aa

UNIT(FPU) .

v.o.ao. -~ P]
-~ - a s A AAAAAAA AN
A A A AAAAMAAAAAAA

- a A A A a a A
X -~ - -~

-~ For functional breakdown
<2 refer to Figure 6 .:«

aAAaaanad
A A A A

Switched baseband

transmitted data

Figure 3

Program functional breakdown

AMD SRS 8

SIMULATOR

SIGNAL
INPUT

ERL-0511-RE UNCLASSIFIED

Collective
input
™ — — - CONTROLLER
|
|
[
|
|
!
I
|
Test information '
I/O request I
|
USER _ _ _ __
l
l
DISPLAY
- - — — | -_—
| ?
Parameter | |
information
1
(I Controller
I I H‘l T‘_I.':'.I.I'I'l.I.I.T'T.I—(.ill"l::: command
| - — = CONTROLLER
! g :
I §
it it |- CONTROLLER
H I HRHRHERERES Measured
= data

Figure4 Data Collector functional breakdown

— . Aaa _ . o . A MMAAAE A A

UNCLASSIFIED ERL-0511-RE
Controller
command
CONTROLLER
Formatted
Collective data
input__ | ‘ Send
- ' en
CONTROLLER .
Actioned
- I A
FORMATTER |/°(30:”1901- o] | sivuLATOR
ModuleFORMAT.C odules param MUL
()-<——> 10.C and FPU 9 [CONTROL
ASYNCH.C) -
Measured FPU data
data ——
- S ol —
CONTROLLER
Unscaled Calibrated Test status
data data data
SCALER CALIBRATOR TEST LOGGER
Figure 5 Controller functional breakdown

1IAQE AQEICIED

ERL-0511-RE UNCLASSIFIED

PP APRPUPRR
Scaled D P e N I T PP

-
da[a b A A A A A A A A A A A AN A AN AAs A A

B R KNSR
SCALER .*.1
™ (Module SCALER C)= Test user

[a%an & A aanannnadata
atata data

a~ N
~ ala
FORMA""'ER— A AAMAAAAANAAMAAANAAAAALMAMAA
S N A N P P A A R N I RS »
~ - -~

aa
b A A A A a A A A A A AN A Ar AN A

nsca AA AN AANAAAAAANAANAAAAAA
-

ll L N N N N N A A N R L R

T
At At At At Attt At At A At At At At AN AN Measurement
Aa

SR oS
- a

““CALIBRATOR

(Module CALIBRATE.C) — FORMATTER

LAGA " ~a -~
S a A a A A - PP R R
h A A A A AT Ara A A A A A A A a A A A
- aaa A d A A TA AT A A A A AR A AT A A A
L A aaaaaaaaaaaa a A a -
aa A A A A A A A ata A a A A A A"A A
A A A A A aa"a"aTaA A TA A aTa A aa
PPN PR A A nAAA A A A
P A A A A A NAAAAAAAAAANAAAA /
PN a"aa aaaa A a A A A A A A
b A A A A A AT AT AT A A A" a a A A ~ ‘
anaa A A A AT A TA A AT AT AT AT AT AT AT A A .
}Aa»o\.\aaganaaaaaa«aaaaa Callbraled
Ar A A A A A AN ar A AN A A A A A A A A
b A A A ~ A A A A oA A A A A
A A A AAAAAAANAMMNAAAAAMAAAMAAGA data
b AT aTA A TATA A A a A A A A A A A A A A

A A A AAAAANMAAMAAANAAAANAAGA

Figure6 Fast Processing Unit Conversion functional breakdown q

UNCLASSIFIED ERL-0511-RE

s 7777777 T 7777777777777 A

I e N S N S N N N N N NN
T NN AN RN NNNNRRNNRNNNNNN
est status AN A A A A A AN N AN NN AN A2

LSASENENEN LS N N N N N N N N NN N NN

data AN N A A N A N A AN N NN AN
S N e N S R N N N N N NN NENERENEN

R A S R A A A R R RN RN

S N N N N S S N N S N S N NN

A AN A A N A A A A A A AN AN AN

o SN S N e N N N N S S N Y N N N N N N N N NN

PN A N A N N A N A A N N NN NN R NN AN NN,

D S S N N N N N N N N N NN NN

CONTROLLER P A A A AN A N N A NN AR A NN NN NN,
I g S N N N N N N N N N S NN N N NENEN

AN A A N A N A N A NN AN

NN NN

N A A A A AN A A A N AN N N AN AN A AN AN N

LR WA Y Y L N N N U U U T A WA T T W YU N WA R TR TR Y
TR R AR AN A A AV A B SR N SN A IR AR SE SR AT A A A
P R PR R R A N A R AR

LA YR Y UL N N N N N N R R TR W YR T U W Y T Y N N R I‘) cd da
L I RN R IR RN gg la

“~ RN NN I NS

20" TEST LOGGER ™ iy
~#7*¢(Module LOGGER.C)\ \f~' — — — - RECORDING

N
UV N AN LA AN N N A s AT DEVICE
N
~

P A A AN IR
L SR W YU N N N W T WA Y W YR WA N N N
I SRR IR
AR A TR WA A TR A Y \,\

/
AR TATAYA AT YA A DA A TR UA T Y
AYA YA Y

R N NN NN NN NN ’
FAST \\\\\\\\\\\\,l,,:,’

N
\
\
~
\
A
hY
Y
“~
.
Y
NN
’
ld
’
4
/’
/’

4

4
/
I\I\I\I\I\/\I\I\I\I\ Vs
PROCESSING INININININININININ S
UNIT WA AN NN
A YA YAY
‘ 7 7 I's
A AR AY
7
Test user
data

/
’ 4
s 7’
AR Y NN

~ ~

’ 4
/7 4
L ’
\,\,\ NN \,\

/ 7’
4
’
’
/
s

Y

b N N N A A NN

4

s 41 7/
AR YA WA WA WA L L A T R A WA A Y
[N
AR ATATAY \,\ NN NN \,\

4
7
4
4
’
7 [NS

L4 7
7 7/ ks s 7
/7 4 4 7z 7/ g
R4 /L 4 /s 7 7S -
AN B AR
LIRSS £ 7 A4 4
‘AN N Y YN YA YT T T YA T L Y S T YA YA A Y
P I I N NN RN 4
AR A AL YL N YA UL A L YT TR A TR A T A A A A W A A
L RN NI I'd LIS 4
A AN YA YA YA YA S TA A SR U N
22 0 ’ s 2 7
PRI - PR

’ PP AR I RN
AARAR AR AR AR R ARAARARN
e RIARAAFAIAF AP A

7
I\ NN N NN
NN NN N AN

D

N

Figure7 Test Logger functional breakdown

UNCLASSIFIED 25

ERL-0511-RE UNCLASSIFIED
MENU.C
Menu_opt ()
Boot ()
Menus ()
Help ()
Draw_border ()
Mainwindow ()
Statusline ()
Gprintf ()
T l ASYNC.C
* Initv ()
Restv ()
DATACOL.C SiM.C * Txst
—————— EE— r()
Get_input () Main () * Rxstr O)
Initialise () Prog_overview () * Txfsh ()
Param_data () Getkey () * Rxfsh ()
Entercom () Title page ()
Get_entry () Test begin () f * Denotes assembly
List_files () routines.
File_input ()
Keybrd_input () 10.C
Edit () ’ | Coms_init ()
Retrieve_data () Coms_restore ()
Print_error () Send ()
Get_command ()) Receive ()
Save_file () “ ?
UTILITIES.C | FORMAT.C
g::::ge: E ; Format_data ()
Change_params () Co.nvert_to_decimal 0
Input string () |— 5 Print_meas ()
Display ()
SCALER.C CALIBRATE.C LOGGER.C
Scale_input ()
Scale_Jevels () Meas_and _cal () Log_data ()

Scale_offset ()
Scale_delay ()
Calc_fdcoeff ()
Scale_osc ()

Figure 8

Module data transfer and subroutine listing

26

__ UNCLASSIFIED

UNCLASSIFIED ERL-0511-RE

6.2

6.3

6.4

6.5

6.6

The controller must also be able to signal to the PTS when the simulator has been reset or
when a new test configuration has been implemented. The simulator has a non-negligible
response time to commands generated by the controller program and there is also a time
delay associated with the transfer of data over the R5232C link. Consequently, there
must be a communication link between the controller and the PTS in order to avoid
unnecessary corruption of the PTS logged data when the simulator is in a transition state.
The impending modifications to the system (referred to in the Introduction), will relieve
the need for PTS-controller synchronisation.

Module SIM.C

This module contains the "Main()" subroutine. It controls the program flow to the
DATACOL.C; SCALER.C; 10.C; FORMAT.C; CALIBRATE.C; MENU.C and LOGGER.C
modules. It also contains all the routines necessary to set up the graphics windows that are
used throughout the program. The test for the overview of the program, which may be
invoked at the beginning of a run to display information regarding the use of the program
(program overview), is also included in this module.

Module DATACOL.C

This module contains routines that are used to extract from the operator all necessary
information about the automated tests that are to be run. The module is only called from
SIM.C, which passes DATACOL.C no data. All input is from the operator, who is given
the option of entering the necessary data either from the keyboard or from a disk file.
Once all the data has been entered into memory and any necessary editing completed (via
module UTILITIES.C) module DATACOL.C passes program control back to "Main()" in
SIM.C.

Module UTTLITIES.C

This module contains the routines that allow the operator to edit, display and otherwise
manipulate the test data. It is called from DATACOL.C, which passes any necessary
parameters for the manipulation that are not already in memory. Depending on the type
of manipulation performed, UTILITIES.C may pass an integer back to DATACOL.C.

Module SCALER.C

This module contains all the routines that scale the values entered by the operator and
convert them into the long integers expected by the floating point unit (FPU) of the
simulator. It is called only from module SIM.C, which passes to SCALER.C the test
parameters that must be scaled and the values that these parameters must take. On
completion of the scaling process this module returns to SIM.C.

Module FORMAT.C

This module contains the routine "format_data()® only. It is called either from module
SIM.C or from CALIBRATE.C. The routine constructs the required controller command in an
ASCII format acceptable to the simulator. The module is passed an integer representing
the instruction type required, and depending on this integer, may be passed additional

ERL-0511-RE UNCLASSIFIED

data. Once the ASCII instruction has been constructed module 10.C is called to
communicate with the simulator.

6.7 Module10.C
This module contains the routines that control communications over the R5232C link, by

invoking the relevant assembly routines of module ASYNC.C. It is called from either
Main(), in SIM.C, or from the FORMAT.C module.

6.8 Module ASYNC.C
This module contains the assembly language routines that control the RS232C
communications between the simulator and the controller. It comprises routines to
initialise communications, to transmit and receive characters, to flush transmit and
receive buffers, and to restore the program after communications.

6.9 Module CALIBRATE.C
This module contains the subroutine "meas_and_cal()" only. It instructs the simulator to
make a measurement of the simulator input signal(s) and then calibrates the measurement
communicated to the controller by the simulator. This value is then sent to the simulator
(via module 10.C) so that internal calibrations may be made within the simulator.

6.10 Module MENU.C
This module is called from the SIM.C module to implement user menu requests or to display
the help menu, or from the DATACOL.C or UTILITIES S.C. modules. The module is passed
information indicating the menu item to be implemented, or the help screen to be
displayed. After completion of the necessary action the module does not pass any data
back to the calling routine.

Except for module ASYNC.C, each of the above modules is compiled and linked by the Turbo C
MAKE file*sim.mak" The"sim.mak" file consists of a number of rules for compiling each of the
above modules into object files. It also includes the rule for linking the modules together to form
the executable ".EXE® file. By using this utility, only the files that are altered need to be
recompiled because Turbo C looks at each object file in a rule and recompiles only if there has
been a recent change to that file. Similarly, Turbo C only relinks a program if there has been a
change affecting the linking rule(s) included in the " MAK *file.

Module ASYNC.C is compiled separately from the other modules by the Microsoft assembly
compiler MASM 5.1. The object file 'async.obj' is then included in the relinking rule in the file
"sim.mak".

NOTE: It is important to remember that every time a change is made to ASYNC.C the file
must be recompiled using an assembly compiler, otherwise "sim.mak” will relink the
old version.

UNCLASSIFIED ERL-0511-RE

7 SUBROUTINE DESCRIPTIONS

The following is a brief description of the subroutines contained in each of the modules described
in Section 6 above. Should a more detailed description and comprehensive flow charts for each
subroutine be required refer to the associated Development Documentation System (DDS)
material held by the author.

7.1 Module SIM.C
This module contains the following five sub-routines.

711

7.1.2

. MAIN 0

. PROG_OVERVIEW ()
. GET_KEY()

. TITLE_PAGE()

o TEST_BEGIN(Q

MAIN()

Called on program start up. No parameters passed to the function.

Calls functions title_page(), get_input(), coms_init(), send(), scale_input(),
format_data(), meas_and_cal(), testbegin(), log_data(), menu_opt(),
coms_restore().

Description - Displays title page (function title_page()) then gets input for the test
sequence to be run from the operator (function get_input()). Next it initialises
programmable gain unit values to unity and installs interrupt service routine and
initialises communications over the RS232C link (function coms_init(})). Sends a
command to initialise the simulator (function send()) and scales all initial
parameter values (function scale_input()). Then formats and sends all these scaled
parameter values to the simulator (function format_data()). Makes measurement of
input signals and calibrates the relevant path data (function meas_and_cal()) then
indicates to the operator that the test sequence is ready to be run (function
testbegin()). Displays menu options then for each test increment scales, formats and
sends to the simulator the relevant parameter data, and then logs the progress of
the test sequence (functions scale_input(), format_data() and log_data()
respectively). While waiting for test time to elapse checks if a menu option has
been chosen by the operator and if so invokes the relevant option (through function
menu_opt()).

PROG_OVERVIEW()

Called from function Main(). No parameters passed to the function.
Calls no other function.

ERL-0511-RE UNCLASSIFIED

713

7.1.4

7.1.5

Description - Displays up to six screens describing the operation of the program to
the operator. The screens may be stepped through or exited from.

GET_KEY()
Called from Main(), utilities(), get_input(), menu().
Calls no other function.

Description - Returns the relevant part of the integer value of the key invoked by
the operator.

TITLE_PAGE(
Called from Main(). No parameters passed to the function.
Calls function prog_overview() if instructed by operator.

Description - Displays title screen page outlining program title and authorship. If
operator specifies, calls prog_overview(), otherwise returns to main().

TEST_BEGIN()
Called from Main(). No parameters passed to the function.
Calls no other function.

Description - Displays a message to the operator indicating that the test sequence
can now be started. Waits for the operator to press a key to return to Main().

7.2 Module DATACOL.C
This module contains the following thirteen subroutines.
. GET_INPUT ()
. FILE_INPUT ()
. LIST_FILES ()
. EDIT ()
. RETRIEVE_DATA ()
. KEYBRD_INPUT ()
. INITIALISE ()
J PARAM_DATA ()
. GET_ENTRY ()
. PRINT_ERROR ()
o ENTERCOM ()
. GET_COMMAND ()
. SAVE_FILE ()
7.2.1 GET_INPUT()
Called from Main(). No parameters passed to the function. A
Calls functions keybrd_input(), file_input(), getkey().
an _LINCIL ASQICICN

B |

|

UNCLASSIFIED ERL-0511-RE

Description - Operator chooses whether input is from a file, in which case
file_input() is called, or from the keyboard, in which case function keybrd_input()
is called. If an invalid key is pressed at this point the operator is again prompted
to make this choice. The operator then nominates whether the output should go to a
file (in which case the file name must be supplied), to a printer, or to the screen (the
default). The operator must finally specify whether the test sequence should run
continuously.

The program returns an integer signifying the number of tests that were entered into
memory (variable "count”).

7.2.2 FILE_INPUT()
Called from get_input(). The address of parameter "repeat”, indicating whether
the current program loop in get_input() should be repeated, is passed to the function.
Calls functions getkey(), help() (in module MENU.Q), list_files(), retrieve_data(),
display() (in module UTILITIES.C), change() (in module UTILITIES.C), edit(),
save_file(), initialise(), param_data() and entercom().

Description - Displays file menu options to the operator (refer to paragraph 5.1.3
for description of these options). Sets function loop flag "get_choice" to FALSE and
invokes relevant file menu option.

F1-HELP

Saves text, calls help(), then restores text screen and sets "get_choices" to TRUE.

F2-LIST
Calls list_files().

F3-VIEW

Calls retrieve_data() and if this routine returns a non-zero value (indicating that
changes were made) calls display().

F4 -EDIT

Saves current text screen, calls retrieve_data() and if this routine returns a non-zero
value, calls change(). Then, if changed) returns a non-zero value, routine display()
is called, followed by edit() and flag "changes” is set TRUE. The saved text is then
restored to the screen, the cursor is repositioned and "get_choices” is set TRUE.

ERL-0511-RE UNCLASSIFIED

7.23

F5-SAVE

Calls function change() and if this returns zero, prints an error message and sets
"get_choice” TRUE. Otherwise calls save_file().

F6 -DELETE

Prompts operator for name of file to be deleted. If operator confirms intention to
delete the named file, constructs file path name and uses Turbo C function ‘remove()'
to delete the file.

F7 -ADD TEST

Calls retrieve_data() and if the return value from this function is non-zero calls
functions initialise(), param_data() and entercom() (placing the return value from
this last function in variable "numtests"), and sets "get_choice” to TRUE. If the
return value was zero then no action is taken.

F8 -RENAME

Prompts user for old and then new file names, constructs the full path file name of
both files and uses the Turbo C function rename() to change the file name.

F9-CONTINUE

Calls retrieve_data() and ass 3ns the return value to variable "numtests".

If flag "get_choice” is now set to TRUE the function loops back to accept another
operator file menu option. Otherwise sets main program loop variable "loop” - to
FALSE, if the last option invoked was F9 and "numtests” was set to a non-zero
value, or else to TRUE.

The function returns the integer variable "numtests".

LIST_FILES
Called from get_input () or from file_input(). No parameters passed to the function.
Calls no other function.

Description - Displays all file names in the current test directory (this directory is
specified by the macro definition "PATH" included with the module declarations)
with creation date and time, by using the Turbo C findfirst() funct. »n. The function
returns no value.

UNCLASSIFIED ERL-0511-RE

7.24

7.2.5

7.2.6

7.2.7

EDIT(

Called from file_input() or from entercom(). The number of the test to be edited
"testnum” is passed to the function.

Calls functions display() and change() (both in module UTILITIES.C) and getkey().

Description - If operator indicates that the tests should be displayed (option F1)
then subroutine display() is called, and edit() is recursively called until the
operator does not choose to redisplay the tests. If the operator instead chooses to
edit the data then function change() is called and if this function returns a non-zero
value function display() is called. Function edit() is then recursively called until
the operator indicates that no further changes to the data need be made.

RETRIEVE_DATA()
Called from function file_input(). No parameters passed to the function.
Calls no other function.

Description - After the operator has entered the name of the file from which the
data is to be retrieved, the full path name is constructed. If the relevant file is not
able to be opened an error message is displayed to the operator and the function
returns no value to file_input(). Otherwise all relevant file data is read into
memory and the parameter "nc" is set accordingly.

The function returns the number of tests read into memory.

KEYBRD_INPUT()
Called from get_input(). No parameters passed to the function.
Calls functions initialise(), param_data() and entercom().

Description - Subroutine initialise() is called to display the relevant parameter
proforma and then subroutine param_data() is called to collect all the operator
parameter data input. Function entercom) is called to collect the user command line
instruction and the return value from this function is assigned to variable "num"”
which is then returned by keybrd_input () to the calling function.

INITIALISE(
Called from function keybrd_input(), file_input() or from change() (in module
UTILITIES.C).
Calls getkey().

Description - If the number of paths for the relevant tests "nc" is zero (indicating
that the function was called from keybrd_input()) the operator is prompted to
specify the number of paths. Th> corresponding proforma for the number of paths is
then displayed to the operator.

This function returns no value.

ERL-0511-RE UNCLASSIFIED

7.2.8

7.29

7.2.10

7.2.11

PARAM_DATA(

Called from keybrd_input() or from file_input(). No parameters are passed to the
function.

Calls functions get_entry() and print_error().

Description - Calls get_entry() for each parameter and places the return value
from this function into variable "num”. This variable is then checked for legal
limits and if outside such limits routine print_error() is called to display an error to
the operator and prompt for parameter re-entry. Parameter values for oscillator
frequency and level are then initialised. The function returns no value.

GET_ENTRY()

Called by function param_data(). The variable "cursor”, containing the current
position of the cursor, is passed to the function.

Calls getkey(), help(), print_error() and input_string().

Description - The cursor is positioned at the relevant parameter and if the
operator invokes F1 (help) the current text screen is saved, the function help() (in
module MENU.C) is called, the text screen is restored to the screen and the cursor is
repositioned. If the operator enters an invalid key subroutine print_error() is called
and then getkey() is called to get the next user keystroke. Function input_string() is
called to enter the operator keystrokes as a string and the macro "value()" (defined
in the declarations of module DATACOL.C) is used to convert this string into a
floating point value.

The function returns the floating point value of the operator entry.

PRINT_ERROR()

Called from get_entry(), param_data() or from change_params() (in module
UTILITIES.C). The cursor position "row” is passed to the function.

Calls no other function.

Description - Positions cursor, displays error message for two seconds and erases
error message. No value is returned by this function.

ENTERCOM()

Called from keybrd_input() or from file_input(). A pointer to the variable "count",
which contains the total number of tests in memory, is passed to the function.

Calls functions getkey(), get_command(), help(), utilities(), edit() and save_file().

Description - Displays relevant proforma, ie. for either one or two paths, to the
operator. Waits for operator keystroke (function getkey()). If F2 is selected this
request is ignored. If the operator enters other than a utilities option, then function
get_commandq() is called to collect the command line instruction. If the return value
from get_command() is zero, ie. the command was not valid, then entercom() is
recursively called; otherwise all utilities options are displayed to the operator

UNCLASSIFIED ERL-0511-RE

and getkey() is called to input the operator's choice. The function loop flag "recur”
is set TRUE if this option is F1 (HELP) or FALSE if this option is F7 (ADD OSC
TONE) or F8 (ADD PATH GAIN). For all other options "recur” is set TRUE.

F1-HELP

Text screen is saved, function help() is called and the text screen is restored.

F2-SAVE AS TEST <test numbers>

Function utilities() (in module UTILITIES.C) is called and the variable containing
the number of tests in memory (“cnt”) is incremented. The text screen is then saved
and a message indicating that the data is being saved is displayed to the operator
for one second. The text screen is then restored and "recur” is set TRUE.

F3-CHANGE PARAMS

Function utilities() (in module UTILITIES.C) is called and then the cursor is restored
to its previous position and "recur” is set TRUE.

F4-FILE

Functions edit() and then save_file() are called to allow the operator to make last
minute changes and to save the data, respectively. From this option the routine
returns.

The value returned is "cnt” - the number of tests currently in memory.

F5-DISPLAY

The current text screen data is saved and if there are no tests currently in memory
this is indicated to the operator. Otherwise, function utilities() (in module
UTILITIES.C) is called to display all test data. The saved text data is then
restored to the screen and "recur” is set TRUE.

F6-REENTER COMMAND

"recur” is simply set to TRUE.

F7-ADD OSC TONE

Function utilities() (in module UTILITIES.C) is called and the cursor is then
repositioned to its previous position.

ERL-0511-RE UNCLASSIFIED

F8-ADD PATH GAIN

Saves the text screen and calls utilities() (in module UTILITIES.C). Then restores
the saved text screen and restores the cursor to its previous position.

If flag "recur” has been set then entercom() is called recursively. Otherwise, the
cursor is repositioned and the program waits for an operator keystroke. The
program then actions the relevant utilities option as above.

7.212 GET_COMMAND()

Called from entercom() or from change() (in module UTILITIES.C). Parameters
passed to the routine in the function call are; "keystroke” - the integer value of the
key last entered by the operator, "i" - a pointer to the array index of the first
parameter code entered by the operator, "j" - a pointer to the array index of the
second parameter code entered by the operator, "first” - a pointer to the initial
(double precision floating point) value that the test parameter(s) will take, "last” -
the final (double) value of this parameter(s), "step” - the (double) value of the
increment by which this parameter(s) shall be changed, and "time" - the (double)
value of the time to be taken for each step increment.

Description - The keystroke made by the operator is first echoed to the screen and
the remainder of the command line instruction is read. The test parameter code(s) is
checked against all valid codes (held in external array comtable[]). If an "&"
character was detected in the command line instruction then variable " is set to
the relevant code. If an "&" was not detected then "j" is initialised to -1. If an
illegal value or parameter code was entered by the operator then an error message is
displayed for two seconds and the function returns a value of zero to its calling
function. Otherwise the function returns a value of one.

7.2.13 SAVE_FILE()
Called from functions entercom() and file_input(). The variable "numtests”
containing the number of tests in memory is passed to this function.
Calls getkey() and input_string().

Description - Loop flag "repeat” is set FALSE. Then the operator is prompted to
enter the name of the file to which this data should be sent. Function getkey() is
called to return the integer value of the next operator keystroke and if this is
RETURN ie. no save is required, then the function returns. Otherwise the file name
is read in by function input_string() and the program checks (using Turbo C function
findfirst()) that this file does not already exist. If the file does exist then the
operator is asked whether that file should be overwritten and function getkey() is
called to get the operator response to this prompt. If the operator response was not
in the affirmative then "repeat” is set TRUE and the function loops around to the
beginning. Otherwise the data is written to the named file. The function returns no
value.

he ¥4

UNCLASSIFIED ERL-0511-RE

7.3

Module UTILITIES.C
This module contains the following five subroutines.

7.3.1

. UTILITIES ()

. CHANGE

. CHANGE_PARAMS ()
. INPUT_STRING ()

. DISPLAY ()

UTILITIES()

Called from functions entercom() (in module DATACOL.C), or from menu() (in
module MENU.C). A variable number of parameters are passed to this function.
The first parameter, an integer representing the function to be performed, is always
passed and is stored in variable "func”.

Calls functions change_params() and display().

Description - If "func” is F2 or F5 then the next parameter passed in the function
call is read into integer variable "count™. Descriptions of the subsequent actions
taken for the possible values of "func” are as follows.

F2-SAVE AS TEST <test number>

Reads successive six parameters passed in the function call (two integers followed
by four double precision numbers) and stores these in the relevant elements of the
global structure array "test".

F3-CHANGE PARAMS
Calls change_params().

F5-DISPLAY
Calls display().

F7-ADD OSCILLATOR TONE

Prompts operator to enter oscillator frequency and then level. Stores these in
elements 21 and 22 of structure array "test".

UNCLASSIFIED a7

ERL-0511-RE UNCLASSIFIED

7.3.2

F8-ADD PATH GAIN

Prompts user to indicate which path (signal or interference) is to have the gain. If
an illegal response is entered the function returns, otherwise the operator is
prompted to enter the gain required. The actual gain achieved will then be
displayed to the operator. This gain is stored in the relevant element of global
simulator parameter array u[] and the function returns the value "x" containing an
integer representing the path that has a non-unity gain. This is required by the
calling function as a measurement of the relevant input signal must next be made to
enable the simulator to recalibrate its path parameters.

In all cases (apart from option F8) the function returns no value.

CHANGE ()

Called from utilities() or edit(). The integer value "n", representing the total
number of tests in memory, is passed to the function.

Calls functions getkey(), display(), input_string(), utilities(), get_command(),
initialise() and change_params().

Description - The operator is prompted to enter the number of the test to be edited
and getkey() is called to input the user's response. If ESC is entered then the
function returns with a return value of zero, indicating that no changes were made to
the data in memory. If option F1 (DISPLAY) was specified then function display()
is called to display to the operator all test data currently in memory. The function
input_string() is then called to input, as a string, the operator response. If, after
conversion to an integer, this value is greater than the total number of tests in
memory an error message is displayed and the function returns with a value of zero.
Otherwise the operator is prompted to indicate which data is to be edited. The
following summarises the actions taken for each legal user response.

T-OSCILLATOR TONE

Calls utilities() then places the entered values for tone frequency and level into the
structure "test”. The function then returns with a value of one, indicating that
changes have been made to the data in memory.

G-PATH GAIN

Calls utilities() then returns with a value of one.

C-COMMAND LINE

Displays relevant command line prompt for the number of paths indicated by the
data in memory. Calls getkey() and then get_command() to input the command

LML ASQICIEN

UNCLASSIFIED ERL-0511-RE

7.3.3

734

instruction entered by the operator. If the command entered was a valid command
then all the data for the command instruction is stored in structure array "test" and
the function returns with a value of one. Otherwise the function loops around and
prompts the operator again to enter a command line instruction.

P-PARAMETER DATA

Calls initialise() (in module DATACOL.C), to display the proforma applicable for
the number of paths indicated by the data now in memory and fills it out with that
data. Then the function calls change_params() to allow the operator to edit this
data and finally the new edited data is stored in place of the old data. The
function returns with a value of one.

CHANGE_PARAMS()
Called from change(). No parameters are passed to the function.
Calls functions getkey(), help(), input_string() and print_error().

Description - Calls getkey() to return the next operator keystroke and if this is
ENTER returns to change() with a value of zero. The actions taken for other valid
operator responses are as follows.

F1-HELP

Saves current text screen, calls help(), restores the text screen and repositions the
cursor.

b N

DOWNKEY (Down arrow key)

If not already at the page bottom, moves cursor down a row.

UPKEY (Up arrow key)

If not already at the page top, moves cursor up a row.

DEFAULT

Calls input_string() to read operator keystroke as a string and if "I" was entered
(indicating infinite value) assigns a value of 1.0E11. Checks for legality of entry
and if invalid calls print_error() to display error message. Otherwise the value is
echoed to the screen and the function returns with no value.

INPUT_STRING()
Called from utilities() or from get_entry() (in module DATACOL.C). An integer "k"
is passed to the function representing the integer value of the operator keystroke,

ERL-0511-RE UNCLASSIFIED

74

7.3.5

and the address of the array str{} in which the entry string will be stored is also
passed.

Description - Calls getkey() to input the rest of the entry string, character by
character, into array str(]. If an invalid keystroke is made it is ignored.

DISPLAY()

Called from functions utilities() or from edit() (in module DATACOL.C). The
function is passed an integer "c" which contains the total number of tests currently in
memory.

Calls no other function.

Description - Displays tests, two per page, until the last test has been displayed or
until the user enters a key other than ENTER.

Module MENU.C
This module contains the following eight subroutines.

7.4.1

U MENU_OPT ()

. BOOT ()
o MENUS
. HELP ()

J DRAW_BORDER ()
. MAINWINDOW ()
. STATUSLINE ()

. GPRINT ()

MENU_OPT()

Called from Main(). The function is passed the integer value representing the
option that is to be implemented.

Calls functions help(), format_data(), boot(), menus() and meas_and_cal().

Description - Takes one of the following seven possible paths depending on the
value of the integer passed in the function call.

F1-HELP
Calls function help ()

F2-RESET
Calls function format_data () in module FORMAT.C.

S |
®
UNCLASSIFIED ERL-0511-RE
®
F3-BOOT
Calls function boot ().
o F4-DISPLAY
Calls function menus ().
° F5-MEASURE
Calls function menus ().
F8-GAIN
® Calls function utilities () and assigns a return value to variable 'point’, indicatin
& po 8
the path to which the gain should be applied. Then calls meas_and_cal () with
function call parameter 'point' to make a measurement of the relevant input.
® F10-QUIT
Requests user confirmation and, if this is given, exits the program. Otherwise no
action is taken.
o The function returns no value.
74.2 BOOT
Called from menu_opt (). No parameters are passed to the function.
® Calls function send () in module I0.C, and function format_data () in module
FORMAT.C.
Description - Displays a message that parameter data is being sent to the
simulator and calls function send () to reset the simulator. There is then a delay of
o three seconds (the reason for this is discussed under section 9) and format_data() is
called to send all current parameter values to the simulator.
The function returns no value.
®
7.4.3 MENUS()
Called from menu_opt (). An integer value represented by the predefined integer
"type’ is passed to the function.
e . .
' Calls functions getkey (), display (), menus () and meas_and_cal ().

ERL-0511-RE UNCLASSIFIED

7.44

7.4.5

7.4.6

Description - A menu is displayed to the operator depending on the value of 'type'.

DISP

The operator can choose from F1 (to display user values) or F2 (to display all scaled
parameter values last sent to the simulator). Getkey() is then called to input the
operator's choice.

The function returns.

F1

Calls function display() then calls menus() recursively.

F2

Displays parameters last sent then calls getkey() and if user keystroke is ESC then
returns. Otherwise menus() is called recursively.

HELP()

Called from functions get_input(), file_input(), get_entry(), entercom(), change(),
change_params(), menu_opt() and menus(). No parameters are passed to the
function.

Calls no other function.

Description - Displays menu options to the operator and, depending on operator
choice, displays either the relevant text information screen or the relevant sub-
menu.

The function returns no value.

DRAWBORDER()
Called from function help().
Calls no other function.

Description - Draws a two-line border around a flood-filled screen.

MAINWINDOW()

Called from function help(). The character string "header” containing the line to
appear at the top of the window is passed to mainwindow() in the function call.
Calls function draw_border().

P

UNCLASSIFIED ERL-0511-RE

Description - Prints the header string at the top of the screen and calls function
draw_border() to set up the window.

7.4.7 STATUSLINE()
Called from function help(). The character string "msg" is passed to statusline() in
the function call.
Calls no other function.

Description - Prints the message string contained in "msg” at the bottom of the
screen page.

7.4.8 GPRINTF(
Called from function help(). A variable number of parameters are passed in the
function call. The first two of these parameters are the integers "xloc" and "yloc",
respectively denoting the x-and y-coordinates of the starting position on screen for
the character string to be displayed. The character string to be output is passed to
the routine at the address denoted by the third function call parameter, "format".
Calls no other function.

Description - This function is used in the same manner as the textual "printf” C
statement to print a string to a graphics screen. Cursor row position is then
incremented by a standard amount.

7.5 Module FORMAT.C
This module contains three subroutines.

. FORMAT_DATA ()
. CONVERT_TO_DECIMAL ()
. PRINT_MEAS (

7.5.1 FORMAT_DATA(Q

Called from main() or from meas_and_cal() (in module CALIBRATE.C). A variable
number of parameters are passed to the function. The first, "com”, indicates the
relevant command option that is to be performed, and the second, "indx", indicates
whether all or a particular parameter is to be formatted for transmission to the
simulator.

Calls functions send() and receive() (in module 10.C), print_meas() and
convert_to_decimal().

Description - The routine takes one of three possible paths of execution depending
on the value of "com"™:

LUNCIL AQQIRIRD. AD

ERL-0511-RE UNCLASSIFIED

7.5.2

SET

Parameter values are converted into an ASCHI string:-

"P (indx value) \r\n"

where indx and value are two and four characters in length respectively and "\r\n"
represents a carriage return followed by a line feed.

These are then sent as arguments to the function send() and simulator response is
waited on by a call to function receive(). This option automatically invokes the
next option.

RESET

This sends a sequence of four command instructions to the simulator by calling send()
and then receive() (in module I0.C). Value "x" is then set to 0.

MEASURE

Calls send() to send a command to the simulator instructing it to initiate the
measurement procedure. The measured values are then read and converted from a
string of three sets of integers to a double precision floating point number by function
convert_to_decimal(). The function then checks that these measurements are valid.
If not, the function loops around to read the next measurement data sent by the
simulator and received by the controller. If the value received by the controller
("number”) is zero, then the peak value is also set to zero; otherwise the peak value

is multiplied by 2™ The measurement voltage is then calculated as:

2.5 (number)i/204800
If the measurement point is at the output, this value is further multiplied by
5.1641272. If "indx" is zero, ie. measurement is continuous, function print_meas() is
called to print out the voltage and peak voltage. Otherwise the measured values
will be averaged over the required time period and then displayed. The value of
"x" is then set to (1.25 / this voltage). Function send() is again called to instruct the
simulator to stop measurement and function receive() is called to receive the
simulator response indicating that measurement has ceased.
The function returns the value "x".

CONVERT_TO_DECIMAL()

Called from function format_data(). A hexadecimal number is passed to the
function in the character array "hex_num".

Calls no other function.

Description - Converts hexadecimal characters passed to the function in
"hex_num” to a long integer. The function then returns that integer to function
format_data(). If any of the original hexadecimal characters were null (that is, an

UNCLASSIFIED ERL-0511-RE

7.6

7.53

invalid quanitity was measured by the simulator), the function immediately returns
the value -1.

PRINT_MEAS()

Called from function format_data(). The function is passed an integer denoting the
point in circuit at which measurement was made by the simulator, the measured
voltage level, and the peak value of that measurement.

Calls no other function.

Description - Calculates and prints out the relevant measurement from the
information given in the function call arguments. If the point for measurement was
at one of the inputs then the voltage rms and peak are displayed. If the
measurement was at one of the outputs then the rms value is printed and the signal-
to-noise ratio is calculated and displayed in dBs.

Module IO.C
This module contains the following four subroutines.

7.6.1

7.6.2

7.6.3

COMS_INIT ()
COMS_RESTORE ()
SEND ()

RECEIVE ()

COMS_INIT(
Called from Main(). No parameters are passed to the function.
Calls assembly routines rxfsh(), txfsh(), initv().

Description - Sets the link communication parameters, via Turbo C function
bioscom(), then calls each of the routines listed above to flush receive and transmit
buffers and install interrupt service routine, respectively.

COMS_RESTORE()

Called from Main() at exit, by the previously installed Turbo C function atexit().
No parameters are passed to the function.

Calls rxfsh(), txfsh() and restv() (in module ASYNC.C).

Description - Calls each of the above routines to flush receive and transmit buffers,
and install/restore the original interrupt vector contents.

SEND()

Called from Main(), boot() and format_data(). The address of the pointer variable
"str”, that contains the data that is to be sent by the function to the simulator, is
passed to send().

Culls assembl;- routine txstr() (in module ASYNC.C).

ERL-0511-RE UNCLASSIFIED

7.6.4

Description - Until a null character is read, thk> contents of "str[]" are sent,
character by character, to the simulator via function txstr().

RECEIVE()
Called from Main(), boot() and format_data(). The integer value of the response

character expected to be read is passed in the function call to receive().
Calls function rxstr() (in module ASYNC.C).

Description - The function calls rxstr() and waits until the response character
expected is received. Then, depending on this response character, the function
either waits to receive a carriage return/ line feed pair, or reads a character string
into array variable "string(]".
The function returns no value.

7.7 Module SCALER.C
This module contains the following six subroutines

7.7.1

7.7.2

. SCALE_INPUT ()

. SCALE_LEVELS
U SCALE_OFFSET 0
. SCALE_DELAY ()
. CALC_FDCOEFF ()
. SCALE_OSC ()

SCALE_INPUT()

Called from Main(). Integer variable "p", representing the parameter(s) to be
scaled, and double precision floating point variable "val", representing the
unscaled value of the relevant parameter, are passed to the function in the function
call.

Calls functions scale_levels(), scale_offset(), scale_delay(), calc_fdcoeff() and
calc_osc().

Description - Depending on the value of "p" one or all of the above functions are
called. In each function call (except for scale_osc() which has no function call
parameters) the parameters "p" and "val” are passed and these are represented by
"indx" and "value" in each of the called functions.

The function returns no value.

SCALE_LEVELS()
Called from scale_input().
Calls no other function.

Description - The FPU gains are calculated as follows and placed in the relevant
elements of global array "u[]™
Nondiversity case:

UNCLASSIFIED ERL-0511-RE

7.7.3

scale1 = 1 + 1/sn1 + 1/si1

temp1 = gw1 + SwW1 + sw2 + sw3 + swé

u[52] (gain sw3) = 20305 (sw3 / (2xtemp1xscale1))%
u[53] (gain sw4) = 20305 (sw4 / (2xtemp1xscale1));
u[54] (gain gw1) = 20305 (gw1 / (tempixscale1))s
u[56] (gain sn1) = 20305 (5 / (sn1xscale1xFB1)):
u[58] (gain si1) = 20305 (1 / (si1xscale1))s

u(69] = -1

Diversity case:

scale1 =1 + 1/sn1 + 1/sit

scale2 = 1 + 1/sn2 + 1/si2

temp1 = gw1 + SW1 + sw2

temp2 = gw2 + SW3 + swd

ul52] (gain sw3) = 20305 (sw3 / (2xtemp2xscale2)):
u[53] (gain sw4) = 20305 (sw4 / (2xlemp2xscale2))§
u[54] (gain gw1) = 20305 (gw1 / (temp1xscale1))%
u{55] (gain gw2) = 20305 (gw2 / (temp2xscalez))§
u(56] (gain sn1) = 20305 (5 / (sn1xscale2xFB1))3
u[57] (gain sn2) = 20305 (5 / (sn2xscale2xFB2)):
u[58] (gain si1) = 20305 (1 / (si1xscale1))s

u[59] (gain si2) = 20305 (1 / (si2xscale2))s

u[60] = 0

u[50] (gain sw1) = 20305 (sw1 / (2xtemp1ixscale1)):

u[51] (gain sw2) = 20305 (sw2 / (2xtemp1ixscale1))s

NOTE: For explanation of FB1 and FB2 refer to the Cossor CSP1250 technical
manual.

The function returns no value.

SCALE_OFFSET()

Called from scale_input().

Calls no other function.

Description - The frequency offsets for path 1 (fol) and path 2 (fo2) are scaled and
placed in the relevant elements of the global FPU parameter array as follows:

ERL-0511-RE UNCLASSIFIED

u[10] = fr(fo1) x 2*' / 10000
uf11] = in(fo1) x 2'° / 10000
u[12] = fr(102) x 2*' / 10000
u[13] = in(fo2) x 2'° 7 10000
(Where fr() and in() indicate fractional and integer portions respectively)

The function returns no value.

7.7.4 SCALE_DELAY()
Called from function scale_input().
Calls no other function.

Description - The user delay values are scaled by multiplying them by 10 and
rounding them to an integer value.
The function returns no value.

7.7.5 CALC_FDCOEFF()
Called from scale_input().
Calls no other function.

Description - The algorithm for calculating fade coefficients (the Hilbert filter
coefficients for the simulator) from the fade rate f are as follows:

(i) e =-f x 10*" (The fade rate is scaled so that it is always in the range 7-100)
(ii) el=e/2000
(iii) BM=[(1000 / €)x 095742
(iv) qa=2lxe1x1.32002
gb = 2lNxe1x0.208123
qc = 2Ixe1x0.8742562

qd = 2MNxe1x1.41585
(These are temporary working variables)

(v) c1=-2xexp(-qa)xcos(qb)
cl=(l+1Dx2°

(vi) u[15+7xi]} =(round)_c1 (i indicates which skywave path)
(This element holds the second of the filter coefficients)

(vii) 2= [c1/@xcos(gb)]’
R2=2x 2"

UNCLASSIFIED

ERL-0511-RE

7.8

7.7.6

(viii) u[16+7xi] = (round)_c2

(ix)

(x)

(xi)

{(xii)

(xiii)

(This element holds the third of the filter coefficients)

D=1+cl+2
_0=c0x2°xBM x4

u[14+7xi] = (round)_c0
(This element holds the first filter coefficient)

d1 = -2 x exp{(-qc) x cos(qd)

dl=(d1+1Dx2"

u[18+7xi] = (round)_d1

(This element holds the fifth of the filter coefficients)

d2 = [d1/(2xcos(qd))’

_d2=d2x2"

u[19+7xi] = (round)_d2

(This element holds the sixth of the filter coefficients)

do=1+d1+d2

_d0=d0x2"xBM x2

u[17+7xi] = (round)_d0

(This element holds the fourth of the filter coefficients)

The function returns no value.

SCALE_OSC()

Called from function scale_input().
Calls no other function.

= 32768) and the voltage level is scaled by (1V = 2317).
The function returns no value.

Module CALIBRATE.C
This module contains the MEAS_AND_CAL() subroutine only.

7.8.1 MEAS_AND_CAL()

Description - The oscillator frequency entered by the operator is scaled by (5000Hz

Called from Main() and from menus() and menu_opt() (in module MENU.C). The

integer variable "indx" is passed to the function indicating the point in circuit at
which measurement should be made by the simulator.

Calls format_data() (in module FORMAT.C).

Description - "indx" is multiplied by 2560 and placed in element [63] of global
array "u(]". Format_data() is then called to send this value to the simulator. The

AMMAGRA .o

ERL-0511-RE UNCLASSIFIED

operator is then prompted to apply the relevant signal and to specify the
measurement period. Format_data() is again called, this time to initiate the
measurement. The return value from this function is placed in the double precision
variable "gain” which is divided into high and low bytes and placed in the
relevant elements of "u[]".

The function returns no value.

79 Module LOGGER.C
This module contains the LOG_DATA () subroutine only.

7.9.1 LOG_DATA(
Called from main(). The function is passed no parameters in the function call.
Calls no other function.

Description - The first time the function is called it displays the logging headings
at the top of the screen (and printer page or file if applicable). Each subsequent
time it is called, the test parameter(s), its incremental value and the time of the
test increment are displayed to the screen, (and to the printer/file if specified). To -
the right of the screen all parameter values for the current test configuration are
displayed.

The function returns r.o value.

8 = FUTUREEDITING OF THE SOFTWARE

When making changes to the controller package, it is important to remember that changes
involving functions which rely on the inclusion of library or include files, or which in some other
way alter the manner by which the routine should be compiled or linked, must be reflected in the
sim.mak MAKE file. As an aid to the programmer the include files needed for each routine, are
listed alongside the code printouts in the DDS documentation held by the author. These can be
made available on request.

Currently the program is set up to allow a maximum number of twenty tests per file. This is an
arbitrary limit only and it can be changed by correcting the value of the global variable
MAXTESTS in module SIM.C.

To incorporate routines to control an RS232C link over which error counts can be communicated
from the error counters to the controller, the assembly routines of module ASYNC.C may be
copied (with modified port and register addresses) and routines similar to those of 10.C may be
used to interface the assembly code with the Turbo C routines. Since i/0 with the error counters
should be straight-forward there is no need to use these assembly routines. The error counter-
controller communication can instead be written in Turbo C. The simulator-controller link code is
written in assembler only for speed problem reasons.

UNCLASSIFIED ERL-0511-RE

9 COSSOR SIMULATOR PROBLEMS

The following is a brief note on some problems observed with the Cossor ionospheric simulator.

When the simulator is started from cold there appears to be a warming-up period during which
the simulator's response to controller commands is sluggish. Under this condition the simulator
will sometimes lock up the R5232C link making communication impossible. For this reason a
delay has been introduced in the program in places where commands sent to the simulator in
succession do not require acknowledgement . Since there is no handshaking between simulator
and controller (the link consists of only transmit, receive and signal ground lines) there is no way
of telling when the simulator is ready to receive data. While most controller commands initiate
an ASCII response from the simulator, some commands do not. If these commands are sent in
succession they may cause simulator problems, even if sent several times.

After prolonged communication between the controller and the simulator, the simulator will
sometimes jump to an irregular mode. This mode cannot necessarily be recognised from the
simulator audible output. It can only be distinguished by an analysis of the data error rates. To
date this mode has not been explained. The only way to correct it is to power the simulator off
and on several times.

It should also be noted that the response time of the simulator to the controller commands is not
constant; response times between <0.1s and >1.5s per command instruction have been observed.
Synchronisation with the PTS is therefore difficult when response time is critical.

rfr

ERL-0511-RE UNCLASSIFIED

UNCLASSIFIED ERL-0511-RE

DISTRIBUTION LIST
Copy No
EXTERNAL
Defence Science and Technology Organisation
Chief Defence Scientist) 1
First Assistant Secretary, Science Policy)
Defence Science Representative London Cont. Sht. Only
Counsellor, Defence Science, Washington Cont. Sht. Only
Scientific Adviser - Defence Central Cont. Sht. Only
Scientific Adviser - Navy Cont. Sht. Only
Scientific Adviser - Air force Cont. Sht. Only
Scientific Adviser - Army Cont. Sht. Only
Superintendent, Communications Engineering Division
Engineering Design Establishment 2
INTERNAL
Electronics Research Laboratory
Director 3
Chief, Communications Division 4
Research Leader, Communications 5
Head, Terrestrial Transmission Systems 6
Attention: Mr J. Tilbrook 7
Head, Radiowave Propagation 8
Attention: Ms P.L. Slingsby 9-10
Technical Documentation Section, Communications Division 11-12
Libraries and Information Services ey
Librarian, Technical Reports Centre, Defence,Library Campbell Park 13
. . . OQad Scieng Wi @n
Documentation Exchange Centre Defence Information SemcesABranc‘?\ 15
Joint Intelligence Organisation (DSTI) 15
Defence Science and Technology Organisation Salisbury, Main Library 16-17
Librarian Defence Signals Directorate Melbourne 18
Library ARL 19
Library MRL 20
National Library of Australia 21
o Australian Defence Force Academy Library 22
feat ff:u United States Defense Technical Information Centre 23-34
o p‘g‘/«"""’\)‘: United Kingdom Defence Research Information Centre 35-36
;d;\,:;" ::}éd Director Scientific Information Services, Canada 37
Pr.CNG S8 New Zealand Ministry of Defence 38
,U,J
Spares
Defence Science and Technology Organisation Salisbury, Main Library 3945

Rl

